
Pratyush Mishra 
UPenn 
Fall 2025

Succinct Arguments

Lecture 03:  
PIOP Toolkit and a PIOP for NP



Recap



3

Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[                   ]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk
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SNARKs
• Completeness: , . 

• Knowledge Soundness:  efficient ,  extractor  s.t. 

 

• Zero Knowledge:  simulator  s.t. , and all , 

 

• Succinctness:  and 

∀ (F, x, w) ∈ ℛ Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ] = 1

∀ P̃ ∃ E

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

∃ 𝖲𝗂𝗆 ∀ (F, x, w) ∈ ℛ Ṽ

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← 𝖲𝗂𝗆(𝗉𝗄, x) ] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F )

π ← P(𝗉𝗄, x, w) ]
|π | = O(log |F | ) 𝖳𝗂𝗆𝖾(V) = O(log |F | , |x | )



Constructing zkSNARKs



PIOP + PC = SNARK



 
 
 
 
 
 

𝖵(𝗏𝗄, F, x) 
 
 
 
 
 

𝖯(𝗉𝗄, F, x, w)

PI
O

P.
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RO
VE

R

PI
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V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK
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Q

SETUP(1λ, N) 
 
 
 

max degree D
(ck, vk)

PIOP(N) 

prover key pk = ck 
verifier key vkoutput 

PC.SETUP(D) 

PIOPs + PC Schemes → SNARK 

+ Fiat—Shamir to get non-interactivity



Verifier Complexity of PIOP-based SNARKs
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Prover 
(F, x, w)

Verifier 
 

 
 
 
 

(F, x)
p1

r1

…

QUERYQ

DECISIONb

pn
rn

PIOP Verifier has to at least read  
• When size of F ≪ size of computation (eg machine computations), TIME(V) is sublinear. 

• When size of F =  size of computation (eg circuit computations),     TIME(V) is linear!

(F, x)

T(SNARK.V) = T(CHECK) + T(PIOP.V)

Can make this sublinear (eg: KZG) What about this?



Constructing PIOPs
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Algebra background: Groups



Algebra background: Fields
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Algebra background: Polynomials
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Algebra background: Poly Interpolation
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Algebra background: Poly Interpolation
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Background on univariate polynomials
Polynomial over  :  

  where  and  takes values in .
𝔽

p(X ) = a0 + a1X + … + adXd ai ∈ 𝔽 X 𝔽

Polynomial Interpolation:  
Given , we can interpolate  over  to obtain  such that 

 where  is the -th element of . In particular, .
A = (a0, …, ad) A H p(X )

p(hi) = ai hi i H p(X ) = ∑ aiLi(X )

Vanishing polynomial:  
The vanishing polynomial for  is  such that H ⊆ 𝔽 vH(X ) vH(h) = 0 ∀ h ∈ H

15

Lagrange Polynomial:  
The -th Lagrange polynomial  is a polynomial that is 1 at  and 0 
everywhere else in . It is of the form .

i Li hi
H Li(X ) = ci ⋅ vH(X )/(X − hi)



Background on multilinear polynomials
Polynomial over  :  

  where  and  is a product of some of the ’s.

𝔽
p(X1, …, Xn) =

2n−1

∑
i=0

aiTi ai ∈ 𝔽 Ti Xj

Boolean Hypercube:  The set .{0,1}n

Lagrange polynomial:  
The -th Lagrange polynomial for the hypercube is the polynomial of the 

form . This is 1 when ’s 

form the Boolean decomposition of .

i

eqi(X1, …, Xn) =
n

∏
j=1

((1 − ij)(1 − Xj) + ijXj) Xi

i
16



Formalism of Relations
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An NP Relation will be defined as a tuple: 
 

 

•  is the NP index. Eg: circuit description 
•  form the NP instance 

•  is the explicit instance 
•  is the implicit instance that is provided as an oracle 

•  is the NP witness

(i, (x, y), w)
i
(x, y)

x
y

w



A toolkit of PIOPs



Warmup: PIOP for Equality (Schwartz-Zippel Lemma)
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Prover 
(p1, p2)

Verifier 
 
 

p1

p1 = p2

p2

• Completeness: If , then definitely . 

• Soundness: If , then  is a root of 

. But since  is random, this happens with probability  

• Generalizes to multilinear/multivariate polynomials.

p1 = p2 p1(r) = p2(r)
p1 ≠ p2 p1(r) = p2(r) ⟹ r

q := p1 − p2 r
deg(q)

|𝔽 |

r ← 𝔽

p1(r) ?= p2(r)



Schwartz-Zippel-DeMillo-Lipton Lemma
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Lemma: Let  be an -variate 

degree  polynomial. Then 

p(X1, …, Xn) ∈ 𝔽[X1, …, Xn] ℓ

d Pr
r1,…,rn←𝔽

[p(r1, …, rn) = 0] =
d

|𝔽 |
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Proof: Via induction on number of variables 
Base case:  follows from prior discussion
Hypothesis: Assume holds for  variables.

Then, we can write 

For random , . 

Also,  

Then, 
                     

                      

n
n = 1

n − 1

p(X1, …, Xn) :=
d

∑
i=1

Xi
1pi(X2, …, Xn)

r2, …, rn Pr[pi(r2, …, rn) = 0] = (d − i)/ |𝔽 |

Pr[p(r1, r2, …, rn) = 0 ∣ pi(r2, …, rn) ≠ 0] = i/ |𝔽 |

Pr[En] = Pr[En ∩ En−1] + Pr[En ∩ En−1]
≤ Pr[En−1] + i/ |𝔽 |

=
d

|𝔽 |

 deg(pi) ≤ d − i



Sumcheck [LFKN90]
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Protocols for the relation  with 
•  
•  where  is a claimed sum and  is a subset of the field 
•  is a polynomial 
•

ℛsum
i = ⊥
x = (σ, S) σ S
y = p
w = ⊥



ZKP MOOC

Multivariate Sumcheck [LFKN90]
▪ Input: V given oracle access to a -variate 

polynomial  over field  and claimed sum . 
▪ Goal: check the claim:  

n
p 𝔽 σ = σ1

∑
b1∈{0,1}

∑
b2∈{0,1}

⋯ ∑
bn∈{0,1}

p(b1, …, bn) = σ1 .

23



ZKP MOOC

Sumcheck Protocol [LFKN90]
• Start: The protocol must check: 

 

• Round 1: 

• P sends univariate polynomial  claimed to equal:  

 

• V checks that .

σ = σ1 = ∑
b1∈{0,1}

… ∑
bn∈{0,1}

p(b1, …, bn)

s1(X1)
H(X1) := ∑

b2∈{0,1}

… ∑
bn∈{0,1}

p(X1, b2, …, bn)

σ1 = s1(0) + s1(1)

Completeness: If  then  

 
Soundness: How can V check that ?

 
Standard idea: Check that  =  for random point .

V can compute  directly from P’s first message, but not . What to do?

σ1 = ∑
b1∈{0,1}

… ∑
bn∈{0,1}

p(b1, …, bn) σ1 = s1(0) + s1(1)

s1 = H1

s1(r1) H1(r1) r1
s1(r) H1(r1) 24



ZKP MOOC

Idea: Recursion!

H(r1) := ∑
b2∈{0,1}

… ∑
bn∈{0,1}

p(r1, b2, …, bn)

This is another sumcheck claim, over  variables!n − 1

25



ZKP MOOC

Recursive Sumcheck [LFKN90]
• Start: The protocol must check: 

 

• Round 1: 

• P sends univariate polynomial  claimed to equal:  

 

• V checks that  and sends . 
• Round 2: 


• P sends univariate polynomial  claimed to equal:  
 

• V checks that  and sends .

σ = σ1 = ∑
b1∈{0,1}

… ∑
bn∈{0,1}

p(b1, …, bn)

s1(X1)
H(X1) := ∑

b2∈{0,1}

… ∑
bn∈{0,1}

p(X1, b2, …, bn)

σ1 = s1(0) + s1(1) r1
$← 𝔽

s2(X2)
H2(X2) := ∑

b3∈{0,1}

… ∑
bn∈{0,1}

p(r1, X2, b3, …, bn)

s1(r1) = s2(0) + s2(1) r2
$← 𝔽

26



Sumcheck protocol
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Prover 
p

Verifier 
 
 

∑
x1∈{0,1}

∑
x2∈{0,1}

… ∑
xn∈{0,1}

p(x1, x2, …, xn) = σ1

p

r1 s1(0) + s1(1) ?= σ1

s2(0) + s2(1) ?= s1(r1)

s1(X1)

r2

s2(X2)

sn(Xn)
sn(0) + sn(1) ?= sn−1(rn−1)



ZKP MOOC

Completeness
We already saw that if Prover is honest, then the 
checks in a given round will pass. 
 
So if P is honest in all rounds, all checks will pass

28



ZKP MOOC

Soundness
Claim: 

 
If P does not send the prescribed messages,  
then V rejects with probability at least  

(  is the maximum degree of )

1 −
n ⋅ d
|𝔽 |

d p

29



ZKP MOOC

Soundness
Proof is by induction on the number of variables . 

Base case:  In this case, P sends a single message 
 claimed to equal ; V picks  at random, checks 

that 

If , then .

ℓ

n = 1
𝑠1(𝑋1) p(X1) r1

s1(r1) = p(r1)

s1 ≠ p Pr
r1∈𝔽

[ s1(r1) = p(r1) ] ≤
d

|𝔽 |

30



ZKP MOOC

Soundness
Inductive case:   
• Recall: P’s first message  is claimed to equal 

                                 

• Then V picks a random and sends to P.  They (recursively) invoke 
sumcheck to confirm that . 

• If   then . 
• If  P must prove a false claim in the recursive call. 

• Claim is about , which is  variate. 

• By induction, P convinces V in the recursive call with prob at most .

ℓ > 1.
𝑠1(𝑋1)

H1(X1) := ∑
b2∈{0,1}

⋯ ∑
bn∈{0,1}

p(X1, b2, …, bn)

𝑟1  𝑟1 
𝑠1(𝑟1) = 𝐻1(𝑟1)

𝑠1 ≠ 𝐻1, Pr𝑟1∈𝔽[𝑠1(𝑟1) = 𝐻1(𝑟1)] ≤
𝑑

|𝔽 |
𝑠1(𝑟1) ≠ 𝐻1(𝑟1),

𝑔(𝑟1, 𝑋2,  …, 𝑋ℓ) n − 1
d(n − 1)

|𝔽 |

31



ZKP MOOC

Soundness analysis: wrap-up
Summary: if   V accepts with probability at most:

   

  
+ 

  

 

𝑠1 ≠ 𝐻1,

Pr𝑟1∈𝔽[𝑠1(𝑟1) = 𝐻(𝑟1)]

Pr
r2,…,rn∈𝔽

[V accepts ∣ s1(r1) ≠ H(r1)] .

≤
d

|𝔽 |
+

d(n − 1)
|𝔽 |

≤
dn
|𝔽 |

32



ZKP MOOC

Costs of the sumcheck protocol
▪ Total communication is  field elements.  
▪ P sends  univariate polynomials of degree at most   
▪ V sends  messages, each consisting of one field element. 

 
  

▪ V’s runtime is:              

▪ P’s runtime is at most:  

O(dn)
n 𝑑 .
n − 1

O(dn + [time to evaluate p at random point])

O(d2n + [time to evaluate p at random point])

33



ZKP MOOC

Univariate Sumcheck [BCRSVW19]
▪ Input: V given oracle access to a univariate 

polynomial  over field  and claimed sum  
▪ Goal: check the claim:  

p 𝔽 σ

∑
h∈H

p(h) = σ .

34



Univariate ZeroCheck
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Prover(p) Verifier  
 
 

(A)p

∀ h ∈ H, p(h) = 0

• Completeness: Follows from lemma, and completeness of previous PIOP. 
• Soundness: The lemma means that we have to check only equality of polynomials 

via the previous PIOP, and so soundness reduces to that of the previous PIOP.

r ← 𝔽

p(r) = q(r)vH(r)

q

Lemma:  if and only if  such that .∀h ∈ H, p(h) = 0 ∃q p = q ⋅ vH



Soundness
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Strategy: Use adversary PZC against PIOP for ZeroCheck  
                to get adversary PEQ against PIOP for Equality

PEQ

Verifier  
 
 

(A)
r ← 𝔽

p(r) = q′￼(r)

p q′￼:= q ⋅ vHPZC p q

• Soundness: If , but , then PEQ breaks 
soundness of the PIOP for Equality. But this happens with negligible 
probability, so PZC is successful with negl. Probability.

p ≠ q . vH p(r) = q(r) ⋅ vH(r)



Lemma: univariate sum check 
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∑
h∈H

p(h) = σ

∃ g s.t. p(X) − (X ⋅ g(X)+ σ
|H |

) = 0 over H

⟺



Proof:

38

Special case where  is multiplicative subgroup consisting of roots 
of unity, and . Then:

H
deg(p) = |H | − 1

∑
h

p(h) = p(ω0) + p(ω1) + ⋯ + p(ω|H|−1)

= a0 ⋅ |H | + a1 ⋅ ∑ ωi + a2 ⋅ ∑ (ω2)i + ⋯

Since sum of roots of unity is 0, so  

Hence 

∑
h

p(h) = σ = a0 ⋅ |H |

σ/ |H | = a0



Lemma: univariate sum check 
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Since  

And since  
Then we can write 

 

Therefore 

p(X) = a0 + a1 ⋅ X + a2X2 + ⋯ + a|H|−1X|H|−1

a0 = σ/ |H |

X ⋅ g(X) = X ⋅ (a1 + a2X + ⋯ + a|H|−1X|H|−2)

∃ g s.t. p(X) = X ⋅ g(X)+ σ
|H |



ZKP MOOC

Multivariate Zerocheck [LFKN90]
▪ Input: V given oracle access to a -variate 

polynomial  over field  and claimed sum . 
▪ Goal: check the claim:  

n
p 𝔽 σ = σ1

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

40



ZKP MOOC

Zerocheck Protocol
• Obervation:  iff 

, where  is binary decomposition of . 

• Idea: Simply evaluate  at a random point !

• But how to do evaluation? Naively, would have to query all points of !


• Idea: sumcheck!   is a sum check claim!


• Problem:  is not a polynomial, but a function!

• Idea: interpolate into polynomial! Let  be interpolation over hypercube

• At the end of the sumcheck protocol, verifier needs to evaluate  and  at random 

point. How to evaluate the latter? 

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0
q(X ) = ∑

i

p( ⃗i) ⋅ Xi = 0 ⃗i i

q(X ) r
p

q(r) = ∑
i

p( ⃗i) ⋅ ri = 0

(1,r, r2, …)
r̃(X1, …, Xn)

p r̃

41



ZKP MOOC

Zerocheck Protocol
• Obervation: Use multilinear polynomials instead of univariate! 
• We want multilinear  such that   iff 
 
  

• What to put in ???

• For univariate we used powers of ; what can we use for multilinear?

• Lagrange basis polynomials, ie !

q ∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

q(X1, …, Xn) = ∑
i

p( ⃗i) ⋅ ??? = 0

X
eq(i, X1, …, Xn)

42



Multilinear ZeroCheck
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Prover(p) Verifier  
 
 

(A)

∀ h ∈ {0,1}n, p(h) = 0

r

Sumcheck for 

p( ⃗X ) ⋅ eq(r, ⃗X )


