
Pratyush Mishra
UPenn
Fall 2025

Succinct Arguments

Lecture 03:  
PIOP Toolkit and a PIOP for NP

Recap

3

Succinct Non-Interactive Arguments (SNARGs)

O(log(F))

pk proving key

x public input

w private witness

Prover

vk verifying key

x public input

Verifier

Õ(F)

I know w s.t. F(x, w) = 1

[]Mic94, Groth10, GGPR13, Groth16…
…, GWC19, CHMMVW20, …

F function
Setup

pk vk

4

SNARKs
• Completeness: , .

• Knowledge Soundness: efficient , extractor s.t.

• Zero Knowledge: simulator s.t. , and all ,

• Succinctness: and

∀ (F, x, w) ∈ ℛ Pr [V(𝗏𝗄, x, π) = 1 :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P(𝗉𝗄, x, w)] = 1

∀ P̃ ∃ E

Pr
V(𝗏𝗄, x, π) = 1

∧
(F, x, w) ∉ ℛ

:
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P̃(𝗉𝗄, x)
w ← EP̃(𝗉𝗄, x)

≈ 0

∃ 𝖲𝗂𝗆 ∀ (F, x, w) ∈ ℛ Ṽ

Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← 𝖲𝗂𝗆(𝗉𝗄, x)] = Pr [V(𝗏𝗄, x, π) :
(𝗉𝗄, 𝗏𝗄) ← 𝖲𝖾𝗍𝗎𝗉(F)

π ← P(𝗉𝗄, x, w)]
|π | = O(log |F |) 𝖳𝗂𝗆𝖾(V) = O(log |F | , |x |)

Constructing zkSNARKs

PIOP + PC = SNARK

𝖵(𝗏𝗄, F, x)

𝖯(𝗉𝗄, F, x, w)

PI
O

P.
P

RO
VE

R

PI
O

P.
V

ER
IF

IE
Rp1

r1…

PC.COMMIT

QUERY

PC.OPEN

pt
rt

PC.COMMIT

cm1

cmt

DECISION(π, [v])
PC.CHECK

7

Q

SETUP(1λ, N)

max degree D
(ck, vk)

PIOP(N)

prover key pk = ck 
verifier key vkoutput

PC.SETUP(D)

PIOPs + PC Schemes → SNARK

+ Fiat—Shamir to get non-interactivity

Verifier Complexity of PIOP-based SNARKs

8

Prover
(F, x, w)

Verifier

(F, x)
p1

r1

…

QUERYQ

DECISIONb

pn
rn

PIOP Verifier has to at least read
• When size of F ≪ size of computation (eg machine computations), TIME(V) is sublinear.

• When size of F = size of computation (eg circuit computations), TIME(V) is linear!

(F, x)

T(SNARK.V) = T(CHECK) + T(PIOP.V)

Can make this sublinear (eg: KZG) What about this?

Constructing PIOPs

10

Algebra background: Groups

Algebra background: Fields

11

Algebra background: Polynomials

12

Algebra background: Poly Interpolation

13

Algebra background: Poly Interpolation

14

Background on univariate polynomials
Polynomial over :

 where and takes values in .
𝔽

p(X) = a0 + a1X + … + adXd ai ∈ 𝔽 X 𝔽

Polynomial Interpolation:
Given , we can interpolate over to obtain such that

 where is the -th element of . In particular, .
A = (a0, …, ad) A H p(X)

p(hi) = ai hi i H p(X) = ∑ aiLi(X)

Vanishing polynomial:
The vanishing polynomial for is such that H ⊆ 𝔽 vH(X) vH(h) = 0 ∀ h ∈ H

15

Lagrange Polynomial:
The -th Lagrange polynomial is a polynomial that is 1 at and 0
everywhere else in . It is of the form .

i Li hi
H Li(X) = ci ⋅ vH(X)/(X − hi)

Background on multilinear polynomials
Polynomial over :

 where and is a product of some of the ’s.

𝔽
p(X1, …, Xn) =

2n−1

∑
i=0

aiTi ai ∈ 𝔽 Ti Xj

Boolean Hypercube: The set .{0,1}n

Lagrange polynomial:
The -th Lagrange polynomial for the hypercube is the polynomial of the

form . This is 1 when ’s

form the Boolean decomposition of .

i

eqi(X1, …, Xn) =
n

∏
j=1

((1 − ij)(1 − Xj) + ijXj) Xi

i
16

Formalism of Relations

17

An NP Relation will be defined as a tuple:

• is the NP index. Eg: circuit description
• form the NP instance

• is the explicit instance
• is the implicit instance that is provided as an oracle

• is the NP witness

(i, (x, y), w)
i
(x, y)

x
y

w

A toolkit of PIOPs

Warmup: PIOP for Equality (Schwartz-Zippel Lemma)

19

Prover
(p1, p2)

Verifier

p1

p1 = p2

p2

• Completeness: If , then definitely .

• Soundness: If , then is a root of

. But since is random, this happens with probability

• Generalizes to multilinear/multivariate polynomials.

p1 = p2 p1(r) = p2(r)
p1 ≠ p2 p1(r) = p2(r) ⟹ r

q := p1 − p2 r
deg(q)

|𝔽 |

r ← 𝔽

p1(r) ?= p2(r)

Schwartz-Zippel-DeMillo-Lipton Lemma

20

Lemma: Let be an -variate

degree polynomial. Then

p(X1, …, Xn) ∈ 𝔽[X1, …, Xn] ℓ

d Pr
r1,…,rn←𝔽

[p(r1, …, rn) = 0] =
d

|𝔽 |

21

Proof: Via induction on number of variables
Base case: follows from prior discussion
Hypothesis: Assume holds for variables.

Then, we can write

For random , . 

Also,  

Then,

n
n = 1

n − 1

p(X1, …, Xn) :=
d

∑
i=1

Xi
1pi(X2, …, Xn)

r2, …, rn Pr[pi(r2, …, rn) = 0] = (d − i)/ |𝔽 |

Pr[p(r1, r2, …, rn) = 0 ∣ pi(r2, …, rn) ≠ 0] = i/ |𝔽 |

Pr[En] = Pr[En ∩ En−1] + Pr[En ∩ En−1]
≤ Pr[En−1] + i/ |𝔽 |

=
d

|𝔽 |

 deg(pi) ≤ d − i

Sumcheck [LFKN90]

22

Protocols for the relation with
•
• where is a claimed sum and is a subset of the field
• is a polynomial
•

ℛsum
i = ⊥
x = (σ, S) σ S
y = p
w = ⊥

ZKP MOOC

Multivariate Sumcheck [LFKN90]
▪ Input: V given oracle access to a -variate

polynomial over field and claimed sum .
▪ Goal: check the claim:

n
p 𝔽 σ = σ1

∑
b1∈{0,1}

∑
b2∈{0,1}

⋯ ∑
bn∈{0,1}

p(b1, …, bn) = σ1 .

23

ZKP MOOC

Sumcheck Protocol [LFKN90]
• Start: The protocol must check:

• Round 1:

• P sends univariate polynomial claimed to equal:

• V checks that .

σ = σ1 = ∑
b1∈{0,1}

… ∑
bn∈{0,1}

p(b1, …, bn)

s1(X1)
H(X1) := ∑

b2∈{0,1}

… ∑
bn∈{0,1}

p(X1, b2, …, bn)

σ1 = s1(0) + s1(1)

Completeness: If then  

 
Soundness: How can V check that ?

 
Standard idea: Check that = for random point .

V can compute directly from P’s first message, but not . What to do?

σ1 = ∑
b1∈{0,1}

… ∑
bn∈{0,1}

p(b1, …, bn) σ1 = s1(0) + s1(1)

s1 = H1

s1(r1) H1(r1) r1
s1(r) H1(r1) 24

ZKP MOOC

Idea: Recursion!

H(r1) := ∑
b2∈{0,1}

… ∑
bn∈{0,1}

p(r1, b2, …, bn)

This is another sumcheck claim, over variables!n − 1

25

ZKP MOOC

Recursive Sumcheck [LFKN90]
• Start: The protocol must check:

• Round 1:

• P sends univariate polynomial claimed to equal:

• V checks that and sends .
• Round 2:

• P sends univariate polynomial claimed to equal:

• V checks that and sends .

σ = σ1 = ∑
b1∈{0,1}

… ∑
bn∈{0,1}

p(b1, …, bn)

s1(X1)
H(X1) := ∑

b2∈{0,1}

… ∑
bn∈{0,1}

p(X1, b2, …, bn)

σ1 = s1(0) + s1(1) r1
$← 𝔽

s2(X2)
H2(X2) := ∑

b3∈{0,1}

… ∑
bn∈{0,1}

p(r1, X2, b3, …, bn)

s1(r1) = s2(0) + s2(1) r2
$← 𝔽

26

Sumcheck protocol

27

Prover
p

Verifier

∑
x1∈{0,1}

∑
x2∈{0,1}

… ∑
xn∈{0,1}

p(x1, x2, …, xn) = σ1

p

r1 s1(0) + s1(1) ?= σ1

s2(0) + s2(1) ?= s1(r1)

s1(X1)

r2

s2(X2)

sn(Xn)
sn(0) + sn(1) ?= sn−1(rn−1)

ZKP MOOC

Completeness
We already saw that if Prover is honest, then the
checks in a given round will pass.

So if P is honest in all rounds, all checks will pass

28

ZKP MOOC

Soundness
Claim: 

If P does not send the prescribed messages,
then V rejects with probability at least

(is the maximum degree of)

1 −
n ⋅ d
|𝔽 |

d p

29

ZKP MOOC

Soundness
Proof is by induction on the number of variables .

Base case: In this case, P sends a single message
 claimed to equal ; V picks at random, checks

that

If , then .

ℓ

n = 1
𝑠1(𝑋1) p(X1) r1

s1(r1) = p(r1)

s1 ≠ p Pr
r1∈𝔽

[s1(r1) = p(r1)] ≤
d

|𝔽 |

30

ZKP MOOC

Soundness
Inductive case:
• Recall: P’s first message is claimed to equal

• Then V picks a random and sends to P. They (recursively) invoke
sumcheck to confirm that .

• If then .
• If P must prove a false claim in the recursive call.

• Claim is about , which is variate.

• By induction, P convinces V in the recursive call with prob at most .

ℓ > 1.
𝑠1(𝑋1)

H1(X1) := ∑
b2∈{0,1}

⋯ ∑
bn∈{0,1}

p(X1, b2, …, bn)

𝑟1 𝑟1
𝑠1(𝑟1) = 𝐻1(𝑟1)

𝑠1 ≠ 𝐻1, Pr𝑟1∈𝔽[𝑠1(𝑟1) = 𝐻1(𝑟1)] ≤
𝑑

|𝔽 |
𝑠1(𝑟1) ≠ 𝐻1(𝑟1),

𝑔(𝑟1, 𝑋2, …, 𝑋ℓ) n − 1
d(n − 1)

|𝔽 |

31

ZKP MOOC

Soundness analysis: wrap-up
Summary: if V accepts with probability at most:

+

𝑠1 ≠ 𝐻1,

Pr𝑟1∈𝔽[𝑠1(𝑟1) = 𝐻(𝑟1)]

Pr
r2,…,rn∈𝔽

[V accepts ∣ s1(r1) ≠ H(r1)] .

≤
d

|𝔽 |
+

d(n − 1)
|𝔽 |

≤
dn
|𝔽 |

32

ZKP MOOC

Costs of the sumcheck protocol
▪ Total communication is field elements.
▪ P sends univariate polynomials of degree at most
▪ V sends messages, each consisting of one field element.

▪ V’s runtime is:

▪ P’s runtime is at most:

O(dn)
n 𝑑 .
n − 1

O(dn + [time to evaluate p at random point])

O(d2n + [time to evaluate p at random point])

33

ZKP MOOC

Univariate Sumcheck [BCRSVW19]
▪ Input: V given oracle access to a univariate

polynomial over field and claimed sum
▪ Goal: check the claim:

p 𝔽 σ

∑
h∈H

p(h) = σ .

34

Univariate ZeroCheck

35

Prover(p) Verifier

(A)p

∀ h ∈ H, p(h) = 0

• Completeness: Follows from lemma, and completeness of previous PIOP.
• Soundness: The lemma means that we have to check only equality of polynomials

via the previous PIOP, and so soundness reduces to that of the previous PIOP.

r ← 𝔽

p(r) = q(r)vH(r)

q

Lemma: if and only if such that .∀h ∈ H, p(h) = 0 ∃q p = q ⋅ vH

Soundness

36

Strategy: Use adversary PZC against PIOP for ZeroCheck
 to get adversary PEQ against PIOP for Equality

PEQ

Verifier

(A)
r ← 𝔽

p(r) = q′￼(r)

p q′￼:= q ⋅ vHPZC p q

• Soundness: If , but , then PEQ breaks
soundness of the PIOP for Equality. But this happens with negligible
probability, so PZC is successful with negl. Probability.

p ≠ q . vH p(r) = q(r) ⋅ vH(r)

Lemma: univariate sum check

37

∑
h∈H

p(h) = σ

∃ g s.t. p(X) − (X ⋅ g(X)+ σ
|H |

) = 0 over H

⟺

Proof:

38

Special case where is multiplicative subgroup consisting of roots
of unity, and . Then:

H
deg(p) = |H | − 1

∑
h

p(h) = p(ω0) + p(ω1) + ⋯ + p(ω|H|−1)

= a0 ⋅ |H | + a1 ⋅ ∑ ωi + a2 ⋅ ∑ (ω2)i + ⋯

Since sum of roots of unity is 0, so

Hence

∑
h

p(h) = σ = a0 ⋅ |H |

σ/ |H | = a0

Lemma: univariate sum check

39

Since

And since
Then we can write

Therefore

p(X) = a0 + a1 ⋅ X + a2X2 + ⋯ + a|H|−1X|H|−1

a0 = σ/ |H |

X ⋅ g(X) = X ⋅ (a1 + a2X + ⋯ + a|H|−1X|H|−2)

∃ g s.t. p(X) = X ⋅ g(X)+ σ
|H |

ZKP MOOC

Multivariate Zerocheck [LFKN90]
▪ Input: V given oracle access to a -variate

polynomial over field and claimed sum .
▪ Goal: check the claim:

n
p 𝔽 σ = σ1

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

40

ZKP MOOC

Zerocheck Protocol
• Obervation: iff

, where is binary decomposition of .

• Idea: Simply evaluate at a random point !

• But how to do evaluation? Naively, would have to query all points of !

• Idea: sumcheck! is a sum check claim!

• Problem: is not a polynomial, but a function!

• Idea: interpolate into polynomial! Let be interpolation over hypercube

• At the end of the sumcheck protocol, verifier needs to evaluate and at random

point. How to evaluate the latter?

∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0
q(X) = ∑

i

p(⃗i) ⋅ Xi = 0 ⃗i i

q(X) r
p

q(r) = ∑
i

p(⃗i) ⋅ ri = 0

(1,r, r2, …)
r̃(X1, …, Xn)

p r̃

41

ZKP MOOC

Zerocheck Protocol
• Obervation: Use multilinear polynomials instead of univariate!
• We want multilinear such that iff 
 

• What to put in ???

• For univariate we used powers of ; what can we use for multilinear?

• Lagrange basis polynomials, ie !

q ∀b1, b2, …, bn ∈ {0,1}, p(b1, …, bn) = 0

q(X1, …, Xn) = ∑
i

p(⃗i) ⋅ ??? = 0

X
eq(i, X1, …, Xn)

42

Multilinear ZeroCheck

43

Prover(p) Verifier

(A)

∀ h ∈ {0,1}n, p(h) = 0

r

Sumcheck for

p(⃗X) ⋅ eq(r, ⃗X)

